sábado, 21 de febrero de 2009

estudios de hibridacion del carbono

TRODUCCIÓN


El carbono es tan importante que existe toda una ciencia particular dedicada a su estudio. Es la química orgánica que se llama así por que empezó siendo el estudio de los organismos vivos formados por compuestos de carbono.

En la actualidad, es el estudio de todos los compuestos del carbono a excepción de los inorgánicos, como los carbonatos y el dióxido de carbono. El carbono se distingue de todos los demás elementos porque puede formar enlaces consigo mismo. De aquí que existan largas cadenas consistentes en cientos de miles de átomos de carbono. Los compuestos orgánicos se dividen en familias, como las proteínas, las grasas y los azucares.











































CONTESTE LAS SIGUIENTES PREGUNTAS

¿Qué es química orgánica y que estudia?

Actualmente la química orgánica se define como la química de los compuestos del carbono, esta definición amplía su alcance, ya que incluye no solamente los compuestos que provienen de la naturaleza, si no que también los compuestos sintéticos, que son compuestos ideados por los químicos orgánicos y preparados en sus laboratorios.

Ésta estudia a los compuesto de carbono combinado con elemento como hidrógeno, oxigeno y nitrógeno.


Con respecto al carbono indique:

Su Z y su A:

Z=6 A=12,0111


El grupo y periodo al cual pertenece en la tabla periódica:

GRUPO: IVA

PERIODO: 2

Su configuración electrónica:

2s p p

Sus electrones de valencia:

Son 4 electrones de valencia.

Su abundancia en la corteza terrestre y el los seres humanos:

Corteza Terrestre = 0,03%

Seres humanos = 18%

¿A qué se llama formas alotrópicas, cuáles son las del carbono? e indique 2 características de cada una.

Las formas alotrópicas, son las distintas formas moleculares en que se presenta un elemento.

Las del carbono son 3:

GRAFITO

DIAMANTE

FULLERENO

GRAFITO

Es negro y opaco y tiene un lustre metálico y una densidad de entre 2,09 y 2,2 g/cm3. Al ser muy blando (dureza entre 1 y 2) mancha cualquier cosa que toque y tiene tacto graso o escurridizo. Cristaliza en el sistema hexagonal, no en forma de cristales bien desarrollados sino como escamas o masas irregulares grandes. Es el único material no metálico que conduce bien la electricidad; sin embargo, a diferencia de los otros conductores eléctricos, transmite mal el calor.

El efecto de la dispersión elevada es la separación de los colores de la luz blanca, de tal manera que la piedra centellea cuando se corta de forma adecuada. Algunos diamantes muestran fluorescencia (un intervalo corto de luminiscencia) cuando se exponen a la luz del sol o de otra fuente ultravioleta. Su color suele ser azul claro, pero puede ser amarillo, naranja, blanco lechoso o rojo.

DIAMANTE

Dos características importantes de los diamantes, cuando se usan como piedras preciosas, son el brillo y el fuego. Las propiedades físicas que los determinan, el índice de refracción y la dispersión, son mayores en el diamante que en cualquier otro mineral natural, transparente e incoloro. Los diamantes sin tallar tienen un lustre graso y no son brillantes; por el contrario, cuando se cortan muestran un fuerte brillo llamado técnicamente adamantino.

FULLERENO

Una de las propiedades más sorprendentes de los fullerenos es que se pueden introducir átomos de elementos en el hueco existente en la 'jaula' de átomos de carbono; así se puede obtener una versión de 'envoltura contraída' de cada elemento del sistema periódico

Otra propiedad importante es que ciertos compuestos de buckminsterfullereno (en especial el K3C60) son superconductores a bajas temperaturas. Se ha averiguado que los derivados del buckminsterfullereno son biológicamente activos y se están utilizando para atacar el cáncer: se cree que las moléculas en forma de pelota de fútbol pueden introducirse en los emplazamientos activos de las enzimas y bloquear su acción.

¿De qué compuesto existe mayor cantidad; de los orgánicos o inorgánicos y por qué?

Existe una mayor cantidad de compuestos orgánicos, estos son muy numerosos, sobre 10 millones, comparados con los compuestos inorgánicos. Esta diferencia tiene su origen en la gran capacidad del carbono para asociarse consigo mismo, formando cadenas y anillos con ramificaciones.


¿A qué se llama teoría Vitalista?

En el siglo XIX, la química orgánica se definía como la que estudiaba las sustancias de origen vegetal y animal, y los químicos estaban convencidos de que para formar compuestos orgánicos se necesitaba una fuerza vital, creencia conocida como teoría vitalista.

¿Cuáles son las propiedades de los compuestos orgánicos e inorgánicos en cuanto a:

COMPUESTOS ORGÁNICOS

COMPUESTOS INORGÁNICOS

Fuente de donde se extrae
Petróleo y carbón mineral y combustibles fósiles.
Sales minerales

Los elementos que lo forman
Carbono, Hidrogeno, Oxigeno, Nitrógeno, Azufre, Fósforo y algunos metales
Toda la tabla periódica

El enlace predominante
COVALENTE
IÓNICO

Sus puntos de fusión
Bajos , por lo general menores de 250º
Altos, sobre 750º

Su solubilidad en agua
Son insolubles en agua, pero se disuelven en solventes no polares o de baja polaridad, como el tetracloruro de carbono CCl4, el cloroformo CHCl3,etc.
Se disuelven en agua, que es un solvente polar.

Sus puntos de ebullición
Bajo, 300ºC
Sobre los 1000ºC.

La velocidad de las reacciones
De 256 veces mayor a 100º temperatura máxima.
Varían con la naturaleza de las sustancias, con la temperatura, presión, etc.

Su conductividad eléctrica
No conducen corriente eléctrica.
Conducen la corriente eléctrica, ya sean disueltos y aún sólidos o cuando se encuentran en estado líquido después de su fundición.



¿Qué dice la teoría hibridación y cómo se aplica en Química?

El átomo al presentar hibridación se siente más cómodo estructural y energéticamente. Este proceso de hibridación no es otra cosa que una combinación de orbítales de diferente energía y orientación

¿Por qué se dice que el carbono en la mayoría de sus compuestos es tetravalente?

Se dice que es tetravalente ya que tiene un número de oxidación 4; no gana ni pierde electrones sino que comparte pares de electrones en uniones covalentes.

Nombre algunos compuestos inorgánicos en que participe el carbono

La química orgánica excluye compuestos como:

Monóxido de carbono CO, Dióxido de carbono CO2, Sulfuro de carbono CS2, Carbonatos, Bicarbonatos y Cianuros, debido a que sus propiedades se asemejan mas a los compuestos inorgánicos.

¿Qué hibridaciones le ocurren al carbono?

Hibridación tetragonal

Cuando un átomo de carbono se combina con otras cuatro átomos, además de la promoción de un electrón desde el orbital 2s al 2p vacío, experimenta la hibridación del orbital 2s con los tres orbítales 2p, para originar cuatro orbítales híbridos idénticos, llamados orbítales híbridos sp3 y que tienen forma bilobulada:




y los ejes de sus cuatro lóbulos mayores se dirigen hacia los vértices de un tetraedro regular:

Esta hibridación, típica de todos los átomos de carbono unidos a otros cuatro átomos cualesquiera, supone la situación más perfecta para que el solapamiento de cada uno de los cuatro orbítales híbridos con el correspondiente orbital de los átomos unidos al átomo de carbono tetraédrico sea máxima. Ello es debido a que la forma traédrica supone la mayor distancia posible entre los cuatro orbítales híbridos y, por tanto, entre los cuatro enlaces covalentes resultantes, con lo que sus repulsiones mutuas serán mínimas y el solapamiento o interpenetración mayor. Con ello, de acuerdo con el principio de Pauling de que a mayor solapamiento corresponde mayor fuerza de enlace, los enlaces  resultantes son muy fuertes y estables.

Hibridación trigonal

En la hibridación sp2 o trigonal la mezcla o hibridación tiene lugar únicamente entre el orbital s y dos orbítales p, quedando el tercer orbital p sin hibridar. Los tres orbítales híbridos resultantes, también bilobulados se sitúan en este caso en un plano y los ejes de sus lóbulos se dirigen hacia los vértices de un triángulo equilátero, quedando el eje del orbital p sin hibridar perpendicular al plano de los tres orbítales híbridos:




Esta hibridación es típica en los átomos de carbono unidos a otros tres átomos, a uno de ellos con un enlace doble.

Hibridación digonal

La hibridación sp o digonal consiste en la hibridación del orbital s con uno de los tres orbítales p. En este caso, los dos orbítales híbridos resultantes se orientan en línea recta, formando un ángulo de 180º, quedando los otros orbítales o sin hibridar formando ángulos de 90º entre sí y con el eje de los dos orbítales híbridos sp:




Esta hibridación es la típica de los átomos de carbono unidos a otros dos átomos, bien con sendos dobles enlaces o bien con un triple enlace a uno de ellos y con uno sencillo al otro.

Otras hibridaciones

Para la interpretación de la geometría de las moléculas, la mayoría de ellas inorgánicas, con átomos con orbítales d, se han desarrollado otras hibridaciones, como la sp3d, cuyos cinco orbítales híbridos dirigen los ejes de sus lóbulos hacia los cinco vértices de un octaedro. La incidencia de estas hibridaciones entre los compuestos orgánicos es mínima.

¿Qué son los hidrocarburos y como se clasifican?

Los hidrocarburos son compuestos orgánicos que contienen sólo carbono e hidrógeno. Las múltiples posibilidades de combinación del carbono se llevan a conformar cadenas y anillos, donde los átomos de carbono se pueden unir mediante enlaces simples, dobles o triples. Esta diversidad permite distinguir dos tipos de hidrocarburos: los ALIFÁTICOS y los AROMÁTICOS. Dentro de los primeros se encuentran los alcanos, lo cicloalcanos, los alquenos y los alquinos, y dentro de los aromáticos el benceno y sus derivados.

¿Qué diferencia en cuanto a su formula general hay entre alcanos, alquenos y alquinos?

La diferencia es que los

ALCANOS: es un hidrocarburo saturado con fórmula general C H (n= 1,2,3,…), que presenta sólo enlaces CC simples.

ALQUENOS: son hidrocarburos no saturado, con formula general C H (n= 2,3,..), que presenta un enlace C=C doble.

ALQUINOS: son hidrocarburos no saturado, con formula general C H (N=2,3,..).


¿Qué son los Isómeros?

miércoles, 11 de febrero de 2009

HIstoria de la Química Orgánica

Química orgánica



Contenido:
1. La crisis del vitalismo
2. Los ladrillos con los que se construye la vida
3. Isómeros y radicales

1. La crisis del vitalismo
Desde el descubrimiento del fuego, el hombre estuvo inevitablemente sujeto a dividir las sustancias en dos clases, según ardiesen o no. Los principales combustibles de la antigüedad fueron la madera y las grasas o aceites. La madera era un producto del mundo vegetal, mientras que la grasa y el aceite eran productos del reino animal o del vegetal. En su mayor parte, los materiales del mundo mineral, tales como el agua, la arena y las rocas, no ardían. Tienden, más bien, a apagar el fuego.
La idea inmediata era que las dos clases de sustancias -combustibles y no combustibles- podían considerarse convenientemente como las que provenían solamente de cosas vivientes y las que no provenían de éstas. (Por supuesto, hay excepciones a esta regla. El carbón y el azufre, que parecen productos de la parte no viviente de la tierra, son combustibles.)
El creciente conocimiento del siglo xvii mostró a los químicos que el mero hecho de la combustibilidad no era todo lo que separaba a los productos de la vida de los de la no-vida. Las sustancias características del medio no-vivo pueden soportar tratamientos enérgicos, mientras que las sustancias provenientes de la materia viva -o que estuvo viva-no pueden. El agua podía hervirse y recondensarse de nuevo; el hierro o la sal podían fundirse y re-solidificarse sin cambiar. El aceite de oliva o el azúcar, sin embargo, sí se calentaban (incluso bajo condiciones que evitasen la combustión), procedían a humear y carbonizarse. Lo que quedaba no era ni aceite de oliva ni azúcar, y a partir de estos residuos no podían formarse de nuevo las sustancias originales.
Las diferencias parecían fundamentales y, en 1807, Berzelius sugirió que las sustancias como el aceite de oliva o el azúcar, productos característicos de los organismos, se llamasen orgánicas. Las sustancias como el agua o la sal, características del medio no-viviente, eran inorgánicas.
Un punto que no dejó de impresionar a los químicos fue que las sustancias orgánicas eran fácilmente convertibles, por calentamiento u otro tratamiento enérgico, en sustancias inorgánicas. El cambio inverso, de inorgánico a orgánico, era sin embargo desconocido, al menos a comienzos del siglo xix.
Muchos químicos de aquella época consideraban la vida como un fenómeno especial que no obedecía necesariamente las leyes del universo tal como se aplicaban a los objetos inanimados. La creencia en esta posición especial de la vida se llama vitalismo, y había sido intensamente predicada un siglo antes por Stahl, el inventor del flogisto. A la luz del vitalismo, parecía razonable suponer que era precisa alguna influencia especial (una «fuerza vital»), operando solamente sobre los tejidos vivos, para convertir los materiales inorgánicos en orgánicos. Los químicos, trabajando con sustancias y técnicas ordinarias y sin ser capaces de manejar una fuerza vital en su tubo de ensayo, no podrían alcanzar esta conversión.
Por esta razón, se argumentaba, las sustancias inorgánicas pueden encontrarse en todas partes, tanto en el dominio de la vida como en el de la no-vida, al igual que el agua puede encontrarse tanto en el océano como en la sangre. Las sustancias orgánicas, que precisan de la fuerza vital, solamente pueden encontrarse en conexión con la vida.
Esta opinión fue subvertida por vez primera en 1828 por el trabajo de Friedrich Wóhler (1800-82), un químico alemán que había sido discípulo de Berzelius. Wóhler, interesado particularmente por los cianuros y compuestos relacionados con ellos, calentó en cierta ocasión un compuesto llamado cianato amónico (considerado en aquella época como una sustancia inorgánica, sin ningún tipo de conexión con la materia viva). En el curso del calentamiento, Wóhler descubrió que se estaban formando cristales parecidos a los de la urea, un producto de desecho eliminado en cantidades considerables en la orina de muchos animales, incluido el hombre. Estudios más precisos mostraron que los cristales eran indudablemente urea, un compuesto claramente orgánico, sin duda.
Wóhler repitió el experimento un cierto número de veces y halló que podía convertir una sustancia inorgánica (cianato amónico) en una sustancia orgánica (urea) a voluntad. Comunicó este descubrimiento a Berzelius, y aquel hombre terco (que raramente condescendía a abandonar sus posiciones) se vio obligado a aceptar que la línea que había trazado entre lo inorgánico y lo orgánico no era tan nítida como había pensado.
La importancia del trabajo de Wóhler no debe ser sobres-timada. En sí mismo no era muy significativo. Había fundamentos para argüir que el cianato amónico no era verdaderamente inorgánico y, aunque lo fuera, la transformación de cianato amónico en urea (como finalmente se puso en claro) era simplemente el resultado de una alteración de la posición de los átomos dentro de la molécula. La molécula de urea no estaba, en ningún sentido real, construida a partir de sustancias completamente distintas.
Pero tampoco puede despreciarse el hallazgo de Wóhler. Si bien era, realmente, un hecho menor en sí mismo, sirvió no obstante para romper la influencia del vitalismo sobre el pensamiento de aquella época, y para animar a los químicos a intentar la síntesis de sustancias orgánicas, cuando de otro modo hubieran dirigido sus esfuerzos en otras direcciones.
En 1845, por ejemplo, Adolph Wilhelm Hermann Kolbe (1818-84), un alumno de Wóhler, sintetizó ácido acético, una sustancia indudablemente orgánica. Más adelante lo sintetizó por un método que mostró que puede trazarse una línea definida de transformación química desde los elementos constituyentes, carbono, hidrógeno y oxígeno, hasta el producto final, ácido acético. Esta síntesis a partir de los elementos o síntesis total es lo máximo que puede pedírsele a la química. Si la síntesis de la urea por Wóhler no dejó resuelta la cuestión de la fuerza vital, la síntesis de Kolbe sí.
Quien llevó las cosas aún más lejos fue el químico francés Pierre Eugéne Marcelin Berthelot (1827-1907). Durante la década de 1850 efectuó sistemáticamente la síntesis de compuestos orgánicos, confeccionando unas tablas. Incluían éstas sustancias tan conocidas e importantes como el alcohol metílico, alcohol etílico, metano, benceno y acetileno. Con Berthelot, cruzar la línea entre lo inorgánico y lo orgánico dejó de ser una aventurada incursión en lo «prohibido» para convertirse en algo puramente rutinario.

2. Los ladrillos con los que se construye la vida
Pero los compuestos orgánicos formados por Wóhler, Kolbe y Berthelot eran todos relativamente simples. Lo más característico de la vida eran las sustancias mucho más complejas, como el almidón, grasas y proteínas. Éstos eran menos fáciles de manejar; su exacta composición elemental no era tan fácil de determinar y en general presentaban el incipiente reino de la química orgánica como un problema realmente formidable.
Todo lo que podía decirse al principio de estas complejas sustancias era que podían escindirse en unidades o «ladrillos» relativamente simples, calentándolas con ácidos o bases diluidas. El pionero en este campo fue un químico ruso, Gottlieb Sigismund Kirchhoff (1764-1833). En 1812 logró convertir almidón (calentándolo con ácido) en un azúcar simple que llamó finalmente glucosa.
En 1820, el químico francés Henri Braconnot trató de la misma manera la gelatina y obtuvo el compuesto glicina. Se trata de un ácido orgánico que contiene nitrógeno y pertenece a un grupo de sustancias que Berzelius llamó aminoácidos. La misma glicina no fue sino el precursor de unos veinte aminoácidos diferentes, todos los cuales fueron aislados de proteínas durante el siglo siguiente.
Tanto el almidón como las proteínas poseían moléculas gigantes que estaban hechas (como finalmente se supo) de largas cadenas de unidades de glucosa o de aminoácidos, respectivamente. Los químicos del siglo xix pudieron hacer poco en el sentido de construir en el laboratorio tan largas cadenas. El caso fue distinto con las grasas.
El químico francés Michel Eugéne Chevreul (1786-1889) pasó la primera parte de una vida profesional increíblemente larga investigando las grasas. En 1809 trató jabón (fabricado por calentamiento de grasa con álcali) con ácido, y aisló lo que ahora se llaman ácidos grasos. Más tarde mostró que cuando las grasas se transforman en jabón, el glicerol se separa de la grasa.
El glicerol posee una molécula relativamente simple sobre la que hay tres puntos lógicos de anclaje para grupos de átomos adicionales. Hacia la década de 1840, por tanto, pareció bastante lógico suponer que mientras el almidón y las proteínas estaban formadas por un gran número de unidades muy sencillas, no ocurría lo mismo con las grasas. Podían construirse grasas con sólo cuatro unidades, una molécula de glicerol, más tres de ácidos grasos.
Aquí intervino Berthelot. En 1854 calentó glicerol con ácido esteárico, uno de los ácidos grasos más comunes obtenidos de las grasas, y se encontró con una molécula formada por una unidad de glicerol unida a tres unidades de ácido esteárico. Era la triestearina, que demostró ser idéntica a la triestearina obtenida a partir de grasas naturales. Este fue el producto natural más complicado sintetizado en aquella época.
Berthelot procedió a dar un paso aún más espectacular. En lugar de ácido estárico tomó ácidos que eran semejantes, pero que no se habían obtenido a partir de grasas naturales. Calentó estos ácidos con glicerol y obtuvo sustancias muy parecidas a las grasas ordinarias pero distintas a todas las grasas conocidas en la naturaleza.
Esta síntesis mostró que el químico podía hacer algo más que reproducir los productos de los tejidos vivos. Podía ir más allá y preparar compuestos análogos a los orgánicos en todas sus propiedades, pero que no eran ninguno de los productos orgánicos producido en los tejidos vivos. Durante la segunda mitad del siglo xix estos aspectos de la química orgánica fueron llevados a alturas verdaderamente asombrosas. (Ver capítulo 10.)
No es de extrañar que hacia mediados del siglo xx la división de los compuestos en orgánicos e inorgánicos sobre la base de la actividad de los tejidos vivos se quedase anticuada. Existían compuestos orgánicos que nunca habían sido sintetizados por un organismo. No obstante, la división era todavía útil, puesto que quedaban importantes diferencias entre las dos clases, tan importantes que las técnicas de la química orgánica eran totalmente diferentes de las de la química inorgánica.
Empezó a verse cada vez más claro que la diferencia residía en la estructura química, puesto que parecían estar implicados dos tipos de moléculas totalmente distintos. La mayoría de las sustancias inorgánicas que manejaban los químicos del siglo xix poseían pequeñas moléculas formadas por dos a ocho átomos. Había muy pocas moléculas inorgánicas que alcanzasen una docena de átomos.
Hasta las más sencillas de las sustancias orgánicas tenían moléculas formadas por una docena de átomos o más; la mayoría por varias docenas. En cuanto a las sustancias como el almidón y las proteínas, poseían literalmente moléculas gigantes que pueden contar sus átomos por cientos y aun cientos de miles.
No es de extrañar, pues, que las complejas moléculas orgánicas pudieran romperse fácilmente y de modo irreversible incluso por fuerzas ruptoras poco enérgicas, tales como el calentamiento suave, mientras que las moléculas inorgánicas sencillas se mantenían firmes incluso bajo condiciones muy duras.
También resultó cada vez más necesario señalar que todas las sustancias orgánicas, sin excepción, contenían uno o más átomos de carbono en su molécula. Casi todas contenían también átomos de hidrógeno. Como el carbono y el hidrógeno eran inflamables, no resultaba sorprendente que los compuestos de los que forman una parte tan importante fueran también inflamables.
Fue el químico alemán Friedrich August Kekulé von Stradonitz (1829-86), generalmente conocido como Kekulé, quien dio el paso lógico. En un libro de texto publicado en 1861 definió la química orgánica simplemente como la química de los compuestos de carbono. La química inorgánica era entonces la química de los compuestos que no contenían carbono, definición que ha sido generalmente aceptada. Sigue siendo cierto, no obstante, que algunos compuestos de carbono, entre ellos el dióxido de carbono y el carbonato cálcico, se parecen más a los compuestos típicos inorgánicos que a los orgánicos. Tales compuestos de carbono se tratan generalmente en los libros de química inorgánica.

3. Isómeros y radicales
Los compuestos inorgánicos sencillos implicados en los grandes avances químicos del siglo xviii recibieron fácil interpretación en términos atómicos. Parecía suficiente indicar los distintos tipos de átomos presentes en cada molécula y el número de cada uno de ellos. Podía escribirse la molécula de oxígeno como 0 2 , el cloruro de hidrógeno como ClH, el amoniaco como NH 4 el sulfato de sodio como S0 4 Na 2 , etc.
Tales fórmulas, que no dan más que el número de átomos de cada tipo presentes en la molécula, se llaman fórmulas empíricas (la palabra «empírico» significa «determinado por experimentación»). Era natural creer, en la primera mitad del siglo xix, que cada compuesto tenía una fórmula empírica propia, y que dos compuestos distintos no podían tener la misma fórmula empírica.
Las sustancias orgánicas, con sus grandes moléculas, resultaron engorrosas desde el principio. La fórmula empírica de la morfina (un compuesto orgánico bastante simple si se lo compara, por ejemplo, con las proteínas) se sabe ahora que es C 17 H 19 N0 3 . Con las técnicas de principios del siglo xviii habría sido muy difícil, quizás incluso imposible, decidir si la correcta era esa o, digamos, C 16 H 20 NO 3 . La fórmula empírica del ácido acético, mucho más simple (C 2 H 4 0 2 ) que la de la morfina, provocó grandes controversias en la primera mitad del siglo xix. Sin embargo, para aprender algo acerca de la estructura molecular de las sustancias orgánicas, los químicos tenían que empezar por las fórmulas empíricas.
En 1780, Lavoisier trató de determinar las proporciones relativas de carbono e hidrógeno en compuestos orgánicos quemándolos y pesando el dióxido de carbono y el agua que producían. Sus resultados no fueron muy precisos. En los primeros años del siglo XIX, Gay-Lussac, descubridor de la ley de los volúmenes de combinación, y su colega el químico francés Louis Jacques Thénard (1777-1857), introdujeron una mejora. Mezclaron la sustancia orgánica con un agente oxidante, tal como el clorato de potasio. Al calentarla, esta combinación produjo oxígeno que, íntimamente mezclado con la sustancia orgánica, provocó su más rápida y completa combustión. Recogiendo el dióxido de carbono y el agua formados, Gay-Lussac y Thénard pudieron determinar las proporciones relativas de carbono y de hidrógeno en el compuesto original. Con la teoría de Dalton recién presentada, esta proporción podía expresarse en términos atómicos.
Muchos compuestos orgánicos están formados únicamente por carbono, hidrógeno y oxígeno. Una vez medidos el carbono y el hidrógeno y dando por supuesta la presencia de oxígeno para explicar cualquier residuo, podía determinarse a menudo la fórmula empírica. Hacia 1811 Gay-Lussac había obtenido, por ejemplo, las fórmulas empíricas de algunos azúcares simples.
Este procedimiento fue posteriormente mejorado por un químico alemán, Justus von Liebig (1803-73), quien, en 1831, obtuvo como resultado fórmulas empíricas claramente fiables. Poco después, en 1833, el químico francés Jean Baptiste André Dumas (1800-84) ideó una modificación del método que permitía al químico recoger también el nitrógeno entre los productos de combustión. De esta manera podían detectarse las proporciones de nitrógeno en una sustancia orgánica.
Estos pioneros del análisis orgánico obtuvieron en el curso de sus investigaciones resultados que acabaron con la creencia en la importancia de la fórmula empírica. Ocurrió de esta manera:
En 1824, Liebig estudió un grupo de compuestos, los fulminatos, mientras Wóhler (que después sería íntimo amigo de Liebig y que pronto sintetizaría la urea, ver pág. 102) estaba estudiando otro grupo de compuestos, los cianatos. Ambos enviaron informes de su trabajo a una revista editada por Gay-Lussac.
Gay-Lussac notó que las fórmulas empíricas dadas para estos compuestos eran idénticas y que, sin embargo, las propiedades descritas eran muy diferentes. Por ejemplo, el cianato de plata y el fulminato de plata constan ambos de moléculas que contienen un átomo de plata, carbono, nitrógeno y oxígeno.
Gay-Lussac comunicó esta observación a Berzelius, a la sazón el químico más famoso del mundo; pero Berzelius descubrió que dos compuestos orgánicos, el ácido racémico y el ácido tartárico, si bien poseían propiedades diferentes, parecían tener la misma fórmula empírica (que ahora se sabe es G 4 H 6 0 6 ).
Como los elementos estaban presentes en estos diferentes compuestos en las mismas proporciones, Berzelius sugirió que tales compuestos se llamasen isómeros (de la palabra griega que significa «iguales proporciones»), y la sugerencia fue adoptada. En las décadas siguientes se descubrieron otros casos de isomería.
Parecía claro que si dos moléculas estaban hechas del mismo número de cada tipo de átomos, y si poseían propiedades distintas, la diferencia debería residir en el modo como los átomos estaban enlazados dentro de la molécula. En el caso de las moléculas sencillas de los compuestos inorgánicos mejor conocidos, podía ocurrir que sólo fuera posible un ordenamiento de los átomos en la molécula. Por esa razón, no podían darse isómeros, y la fórmula empírica sería suficiente. Así, H 2 0 sería agua y nada más que agua.
Sin embargo, en las moléculas orgánicas más complicadas, había lugar para diferentes ordenamientos y, por tanto, para isómeros. En el caso de los cianatos y fulminatos, los diferentes ordenamientos son fáciles de descubrir, pues cada molécula no contiene más que unos pocos átomos. El cianato de plata puede escribirse AgOCN, mientras que el fulminato es AgNCO.
Aquí solamente intervienen cuatro átomos. Cuando la cantidad es mayor, el número de ordenamientos posibles se hace tan grande que es realmente difícil decidir cuál de ellos corresponde a cada compuesto. Incluso el caso del ácido racémico y el ácido tartárico, con dieciséis átomos en sus moléculas, eran demasiado difícil de manejar en la primera mitad del siglo xix. La situación se volvería simplemente imposible (así debió parecer entonces) al considerar moléculas aún mayores.
El problema de la estructura molecular tendría que haber sido abandonado sin esperanza, tan pronto como se detectó la verdadera naturaleza del problema, de no haber surgido una posibilidad de simplificación.
A partir de 1810 Gay-Lussac y Thénard trabajaron con cianuro de hidrógeno (CNH), demostrando que era un ácido, aunque no contenía oxígeno (esto, junto con el descubrimiento casi simultáneo de Davy sobre el mismo hecho referido al ácido clorhídrico, refutaba la creencia de Lavoisier de que el oxígeno era el elemento característico de los ácidos), Gay-Lussac y Thénard hallaron que la combinación CN (el grupo cianuro) podía desplazarse de un compuesto a otro sin que se separasen los átomos de carbono y nitrógeno. En efecto, la combinación CN actuaba del mismo modo que un átomo aislado de cloro, bromo, etc., hasta el punto de que el cianuro sódico (CNNa) tenía algunas propiedades en común con el cloruro sódico (CINa) y el bromuro sódico (BrNa).
Tal grupo de dos (o más) átomos que permanecían combinados al pasar de una molécula a otra se denominó un radical, vocablo que proviene de la palabra latina que significa «raíz». La razón de este nombre estaba en la creencia de que las moléculas podían construirse a partir de un número limitado de combinaciones de átomos pequeños. Los radicales serían entonces las «raíces» a partir de las cuales la molécula crecería, por así decirlo.
Desde luego, el grupo CN era muy sencillo, pero Wóhler y Liebig, trabajando juntos, describieron un caso mucho más complejo. Descubrieron que el grupo benzoílo podía traspasarse de una molécula a otra sin ser destruido. La fórmula empírica del grupo benzoílo se sabe actualmente que es C 7 H 5 0.
En resumen, comenzó a verse que para resolver el misterio estructural de las grandes moléculas había que resolver primero las estructuras de determinado número de radicales diferentes. Las moléculas podrían después construirse sin mucha dificultad (así se esperaba) a partir de los radicales. ¡Las cosas prosperaban!

sepracion de mezclas

Técnicas de separación de mezclas


Introducción
Destilación
Evaporación
Centrifugación
Levigación
Imantación
Cromatografía de Gases
Cromatografía en Papel
Decantación
Tamizado
Filtración

INTRODUCCIÓN

El trabajo que a continuación se presentará contiene información relacionada con la "separación de mezclas", lo cual tiene una gran importancia porque se conoce sobre propiedades, sobre los instrumentos y métodos adecuados para elaborar dichas mezclas o bien separarlos.

La correcta separación de mezclas nos ayuda a poner en práctica todos los métodos que se presentarán, para separar mezclas; es importante saber sobre su estado físico, y características lo cual a continuación se presentará…

1) Destilación.

La destilación es el procedimiento más utilizado para la separación y purificación de líquidos, y es el que se utiliza siempre que se pretende separar un líquido de sus impurezas no volátiles.



La destilación, como proceso, consta de dos fases: en la primera, el líquido pasa a vapor y en la segunda el vapor se condensa, pasando de nuevo a líquido en un matraz distinto al de destilación.

2) Evaporación.

Consiste en calentar la mezcla hasta el punto de ebullición de uno de los componentes, y dejarlo hervir hasta que se evapore totalmente. Este método se emplea si no tenemos interés en utilizar el componente evaporado. Los otros componentes quedan en el envase.

Un ejemplo de esto se encuentra en las Salinas. Allí se llenan enormes embalses con agua de mar, y los dejan por meses, hasta que se evapora el agua, quedando así un material sólido que contiene numerosas sales tales como cloruro de sólido, de potasio, etc…

3) Centrifugación.

Es un procedimiento que se utiliza cuando se quiere acelerar la sedimentación. Se coloca la mezcla dentro de una centrifuga, la cual tiene un movimiento de rotación constante y rápido, lográndose que las partículas de mayor densidad, se vayan al fondo y las más livianas queden en la parte superior.



CENTRIFUGADORA

Un ejemplo lo observamos en las lavadoras automáticas o semiautomáticas. Hay una sección del ciclo que se refiere a secado en el cual el tambor de la lavadora gira a cierta velocidad, de manera que las partículas de agua adheridas a la ropa durante su lavado, salen expedidas por los orificios del tambor.

4) Levigación.

Se utiliza una corriente de agua que arrastra los materiales más livianos a través de una mayor distancia, mientras que los más pesados se van depositando; de esta manera hay una separación de los componentes de acuerdo a lo pesado que sean.

5) Imantación.

Se fundamenta en la propiedad de algunos materiales de ser atraídos por un imán. El campo magnético del imán genera una fuente atractora, que si es suficientemente grande, logra que los materiales se acercan a él. Para poder usar este método es necesario que uno de los componentes sea atraído y el resto no.

6) Cromatografía de Gases.

La cromatografía es una técnica cuya base se encuentra en diferentes grados de absorción, que a nivel superficial, se pueden dar entre diferentes especies químicas. En la cromatografía de gases, la mezcla, disuelta o no, es transportada por la primera especie química sobre la segunda, que se encuentran inmóvil formando un lecho o camino.Ambos materiales utilizarán las fuerzas de atracción disponibles, el fluido (transportados), para trasladarlos hasta el final del camino y el compuesto inmóvil para que se queden adheridos a su superficie.



7) Cromatografía en Papel.

Se utiliza mucho en bioquímica, es un proceso donde el absorbente lo constituye un papel de Filtro. Una vez corrido el disolvente se retira el papel y se deja secar, se trata con un reactivo químico con el fin de poder revelar las manchas.

En la cromatografía de gases, la mezcla, disuelta o no, es transportada por la primera especie química sobre la segunda, que se encuentran inmóvil formando un lecho o camino.

Ambos materiales utilizarán las fuerzas de atracción disponibles, el fluido (transportados), para trasladarlos hasta el final del camino y el compuesto inmóvil para que se queden adheridos a su superficie.

8) Decantación.

Consiste en separar materiales de distinta densidad. Su fundamento es que el material más denso



En la cromatografía de gases, la mezcla, disuelta o no, es transportada por la primera especie química sobre la segunda, que se encuentran inmóvil formando un lecho o camino.

Ambos materiales utilizarán las fuerzas de atracción disponibles, el fluido (transportados), para trasladarlos hasta el final del camino y el compuesto inmóvil para que se queden adheridos a su superficie.

9) Tamizado.

Consiste en separar partículas sólidas de acuerdo a su tamaño. Prácticamente es utilizar coladores de diferentes tamaños en los orificios, colocados en forma consecutiva, en orden decreciente, de acuerdo al tamaño de los orificios. Es decir, los de orificios más grandes se encuentran en la parte superior y los más pequeños en la inferior. Los coladores reciben el nombre de tamiz y están elaborados en telas metálicas.



10) Filtración.

Se fundamenta en que alguno de los componentes de la mezcla no es soluble en el otro, se encuentra uno sólido y otro líquido. Se hace pasar la mezcla a través de una placa porosa o un papel de filtro, el sólido se quedará en la superficie y el otro componente pasará.

Se pueden separar sólidos de partículas sumamente pequeñas, utilizando papeles con el tamaño de los poros adecuados.



CONCLUSIÓN

Al observar e investigar sobre dicha información "Separación de Mezclas", hemos llegado a entender que para realizar cualquier separación de mezclas primero debemos saber sobre su estado físico, características y propiedades.

Es interesante realizar una mezcla, pero es más importante tener claro cuales componentes se mezclan para que la hora de separar usemos la técnica más adecuada.

María

mary_teran[arroba]cantv.net

lunes, 9 de febrero de 2009

materia y energia

MATERIA Y ENERGÍA
MATERIA




La materia es todo aquello que nos rodea, ocupa un lugar en el espacio y tiene masa,




PROPIEDADES DE LA MATERIA

Todo lo que nos rodea y que sabemos como es se le llama materia. Aquello que existe pero no sabemos como es se le llama no-materia o antimateria.


Al observar la materia nos damos cuenta que existen muchas clases de ella porque la materia tiene propiedades generales y propiedades particulares.

Propiedades generales
Las propiedades generales son aquellas que presentan características iguales para todo tipo de materia. Dentro de las propiedades generales tenemos:

Masa =
Es la cantidad de materia que posee un cuerpo.


Peso =

Es la fuerza de atracción llamada gravedad que ejerce la tierra sobre la materia para llevarla hacia su centro.


Extensión =

Es la propiedad que tienen los cuerpos de ocupar un lugar determinado en el espacio.


Impenetrabilidad =

Es la propiedad que dice que dos cuerpos no ocupan el mismo tiempo o el mismo espacio.


Inercia=


Es la propiedad que indica que todo cuerpo va a permanecer en estado de reposo o movimiento mientras no exista una fuerza externa que cambie dicho estado de reposo o movimiento.

Porosidad =

Es la propiedad que dice que como la materia esta constituida por moléculas entre ellas hay un espacio que se llama poro.


Elasticidad =

Es la propiedad que indica que cuando a un cuerpo se le aplica una fuerza esta se deforma y que al dejar de aplicar dicha fuerza el cuerpo recupera su forma original; lógicamente sin pasar él limite de elasticidad. "limite de influenza "


Divisibilidad =
Esta propiedad demuestra que toda la materia se puede dividir.



Propiedades Especificas


Todas las sustancias al formarse como materia presentan unas propiedades que las distinguen de otras y esas propiedades reciben el nombre de especificas y dichas propiedades reciben el nombre de color, olor, sabor, estado de agregación, densidad, punto de ebullición, solubilidad, etc.


El color, olor y sabor demuestra que toda la materia tiene diferentes colores, sabores u olores.
El estado de de agregación indica que la materia se puede presentar en estado sólido, liquido o gaseoso.
La densidad es la que indica que las sustancias tienen diferentes pesos y que por eso no se pueden unir fácilmente .



CLASIFICACIÓN DE LA MATERIA


Materia heterogéneo Es una mezcla de sustancias en más de una fase o que son físicamente distinguibles.
EJEMPLO: mezcla de agua y aceite.

Material homogéneo:
Constituido por una sola sustancia o por varias que se encuentran en una sola fase
EJEMPLO: mezcla de sal y agua.

Solución: Es un material homogéneo constituido por más de una sustancia. Son transparentes, estables y no producen precipitaciones. Una característica muy importante es la composición, la cual es igual en todas sus partes. Sin embargo, con los mismos componentes es posible preparar muchas otras soluciones con solo variar la proporción de aquellos
EJEMPLO: las gaseosas.

Sustancia pura: Es un material homogéneo cuya composición química es invariable.
EJEMPLO: alcohol (etanol)


Elemento: Sustancia conformada por una sola clase de átomos
EJEMPLO: nitrógeno gaseoso (N2), la plata (Ag)

Compuesto: Sustancia conformada por varias clases de átomos
EJEMPLO: dióxido de carbono (CO2)


CAMBIOS DE LA MATERIA
Cambio físico: Cambio que sufre la materia en su estado, volumen o forma sin alterar su composición. EJEMPLO: en la fusión del hielo, el agua pasa de estado sólido a líquido, pero su composición permanece inalterada.

Cambio químico: Cambio en la naturaleza de la materia, variación en su composición EJEMPLO: en la combustión de una hoja de papel, se genera CO, CO2 y H2O a partir de celulosa, cambiando la composición de la sustancia inicial.


Cambios de estado: El estado en que se encuentre un material depende de las condiciones de presión y temperatura, modificando una de éstas variables o ambas, se puede pasar la materia de un estado a otro.
Sólido, liquido, gaseoso o plasma


CAMBIOS DE ESTADO

CARACTERÍSTICAS DE LOS DIFERENTES ESTADOS DE LA MATERIA
SÓLIDOS
LÍQUIDOS
GASES

COMPRESIBILIDAD
No se pueden comprimir
No se pueden comprimir
Sí pueden comprimirse

VOLUMEN
No se adaptan al volumen del recipiente
Se adaptan al volumen del recipiente
Se adaptan al volumen del recipiente

GRADOS DE LIBERTAD
Vibración
Vibración, rotación
Vibración, rotación, traslación

EXPANSIBILIDAD
No se expanden
No se expanden
Sí se expanden



REPRESENTACIÓN DE LOS COMPUESTOS
Símbolo : es la letra o letras que se emplean para representar elementos químicos. EJEMPLO: Al (aluminio)

Molécula : se forman por enlaces químicos de dos o más átomos y siempre en proporciones definidas y constantes. Son la estructura fundamental de un compuesto.

Fórmula:

Fórmula química
Fórmula empírica o mínima
Fórmula molecular
Fórmula estructural :
Fórmula de Lewis o electrónica:

Es la representación de un compuesto e indica la clase y la cantidad de átomos que forman una molécula.
Está constituido por el símbolo de cada elemento presente en la sustancia, seguido por un subíndice que índica el número relativo de átomos.
Informa sobre el tipo de átomos que forman la molécula y la relación mínima en la cual estos se combinan. Expresa la composición real de un compuesto, indicando el número de átomos de cada especie que forma la molécula. La fórmula molecular es un múltiplo de la empírica. Muestra el ordenamiento geométrico o posición que ocupa cada átomo dentro de la molécula.
Representa la molécula incluyendo todos los electrones de valencia de los átomos constituyentes, estén o no comprometidos en enlaces.
EJEMPLO:

Fe2O3
EJEMPLO:

La fórmula mínima del etano (C2H6) es CH3
EJEMPLO:


EJEMPLO:


EJEMPLO:



UNIDADES QUÍMICAS:
Mol: Es el número de partículas igual al número de Avogadro
Nùmero de Avogadro 6.023 x 1023 partículas
Peso Atómico: Es el peso de una mol de átomos de un elemento.
EJEMPLO:

En un mol de Fe (hierro) hay 6.023 x 1023 átomos de hierro y estos pesan en total 55.8 g


1MOL = 6.023 x 1023 = peso atómico del elemento

Unidades de Masa Atómica u.m.a

La unidad de masa atómica uma es en realidad una unidad de peso y se define exactamente como 1/2 de la masa del átomo de 12C. Su tamaño extremadamente pequeño es cómodo para la descripción del peso de los átomos. Por ejemplo, el peso real de un átomo de hidrogeno es 1.67 x 10-24 g 0 1.008 uma.

Como todos los pesos atómicos se basan en el mismo patrón, todos ellos pueden utilizarse para comparar los pesos de dos átomos cualesquiera. Así , el peso atómico del azufre, 32.06 uma, indica que:



El cobre tiene un peso atómico de 63.54 uma. Por consiguiente,



en consecuencia:



Peso Molecular: Es el peso de una mol de moléculas de un compuesto. Se obtiene sumando el peso atómico de todos los átomos que forman la molécula.
1 MOL = 6.023 x 1023 moléculas = peso molecular (peso fórmula)


EJEMPLO: En un mol de H2SO4 (ácido sulfúrico) hay 6.023 x 1023 moléculas de ácido y estas pesan 98 g. Este resultado se obtiene teniendo en cuenta el número de átomos y sus pesos atómicos, así::


hidrógeno 2 x 1 = 2
azufre 1 x 32 = 32
oxígeno 4 x 16 = 64

Relación entre mol, peso molecular y número de partículas:

martes, 3 de febrero de 2009

Cálculo de Potencial de Hidrógenos

El pH:Definición, cálculo, valores, medida

¿Qué es el pH?.

El pH es un valor que se usa para indicar la acidez o alcalinidad de una sustancia. La escala de pH es una escala logarítmica de crecimiento exponencial. Oscila entre los valores de 0 (más acido) y 14 (más básico), 7 es Neutro. El "factor pH" se define como el potencial de Hidrógeno calculado como el logaritmo de la actividad o concentración molar de los iones Hidrógeno (H+ ó hidronio H3O+). pH = -log[H+].

Si la concentración de iones hidrógeno en una muestra en disolución es de 2.0*10E-3 M y aplicamos la fórmula citada llegaremos a la conclusión de que es una disolución muy ácida, puesto que su pH es 2.7. Así es como hemos procedido para hallar el pH:

Para [H+] = 2.0*10E-3 M [OH-] = 10E14/2.*10-3 = 5.0*10E-12M pH = -log 2.0*10E-3 = 2.70 pOH = 14-2.70 = 11.30 Comprobando pH = 14-pOH = 14-11.30 = 2.70

Para [H+] = 1*10E-7 M = 0,0000001 pH = 7, ya que pH = -log[10E-7] = 7.0 Kw = [H+][OH-]=10E-14 en donde [H+] es la concentración de iones de hidrógeno, [OH-] la de iones hidróxido, y Kw es una constante conocida como producto iónico del agua. log Kw = log [H+] + log [OH-] 14 = log [H+] + log [OH-]
https://www.u-cursos.cl/medicina/2008/1/ENFQUIMIC1/1/material_docente/previsualizar.php?id_material=164263
Ejemplos de pH:

Agua corriente 6
Agua de lluvia 5,6
Agua de mar 8,0
Agua de mar 8,5
Agua potable 5 a 8
Agua pura 7,0
Amoníaco (disuelto) 11,8 a 12,3
Bicarbonato sódico (Sol. satura.) 8,4
Café 5
Cerveza 4,1 a 5
Disolución de HCl 1 M 0
Disolución de NaOH 1 M 14
Gaseosas 1,8 a 3
Huevos frescos 7,8
Jugo de limón 2,1 a 2,4
Jugo de naranja 3 a 4
Jugo gástrico 1 a 3
Jugo gástrico 1,5 Leche 6,9 Leche de magnesia 10,5
leche de magnesia 10,5
Leche de vaca 6,4
Lejía 12
Lluvia ácida 5,6
Orina humana 6,0
Pasta de dientes 9,9
Saliva (al comer) 7,2
Saliva (reposo) 6,6
Sangre humana 7,4
Tomates 4,2
Vinagre 2,5 a 3,5
Vino 3,5
Zumo de limón 2,5
Zumo de naranja 4
Zumo de tomate 4


Medida del pH:

El valor del pH se puede medir de forma precisa mediante un pHmetro, un instrumento que mide la diferencia de potencial entre dos electrodos: un electrodo de referencia (generalmente de plata/cloruro de plata) y un electrodo de vidrio que es sensible al ión hidrógeno.

También se puede medir de forma aproximada el pH de una disolución empleando indicadores, ácidos o bases débiles que presentan diferente color según el pH. Generalmente se emplea papel indicador, que se trata de papel impregnado de una mezcla de indicadores. (Nota: Al poner el término 10E-3, queremos referirnos a 10 elevado a -3)

bobquim mayo04